Как правильно пишется ответ примера двадцать один минус четыре равно

  • Главная
  • Калькуляторы
  • Математический калькулятор

Математический калькулятор

Математический-Калькулятор-Онлайн v.1.0

Калькулятор выполняет следующие операции: сложение, вычитание, умножение, деление, работа с десятичными, извлечение корня, возведение в степень, вычисление процентов и др. операции.

Решение:

Как работать с математическим калькулятором

Клавиша Обозначение Пояснение
цифры 0-9 Арабские цифры. Ввод натуральных целых чисел, нуля. Для получения отрицательного целого числа необходимо нажать клавишу +/-
точка (запятая) Разделитель для обозначения десятичной дроби. При отсутствии цифры перед точкой (запятой) калькулятор автоматически подставит ноль перед точкой. Например: .5 — будет записано 0.5
знак плюс Сложение чисел (целые, десятичные дроби)
знак минус Вычитание чисел (целые, десятичные дроби)
знак деления Деление чисел (целые, десятичные дроби)
знак умножения Умножение чисел (целые, десятичные дроби)
корень Извлечение корня из числа. При повторном нажатие на кнопку «корня» производится вычисление корня из результата. Например: корень из 16 = 4; корень из 4 = 2
возведение в квадрат Возведение числа в квадрат. При повторном нажатие на кнопку «возведение в квадрат» производится возведение в квадрат результата Например: квадрат 2 = 4; квадрат 4 = 16
дробь Вывод в десятичные дроби. В числителе 1, в знаменателе вводимое число
процент Получение процента от числа. Для работы необходимо ввести: число из которого будет высчитываться процент, знак (плюс, минус, делить, умножить), сколько процентов в численном виде, кнопка «%»
открытая скобка Открытая скобка для задания приоритета вычисления. Обязательно наличие закрытой скобки. Пример: (2+3)*2=10
закрытая скобка Закрытая скобка для задания приоритета вычисления. Обязательно наличие открытой скобки
плюс минус Меняет знак на противоположный
равно Выводит результат решения. Также над калькулятором в поле «Решение» выводится промежуточные вычисления и результат.
удаление символа Удаляет последний символ
сброс Кнопка сброса. Полностью сбрасывает калькулятор в положение «0»

Алгоритм работы онлайн-калькулятора на примерах

Сложение.

Пример:

Сложение целых натуральных чисел { 5 + 7 = 12 }

Сложение целых натуральных и отрицательных чисел { 5 + (-2) = 3 }

Сложение десятичных дробных чисел { 0,3 + 5,2 = 5,5 }

Вычитание.

Пример:

Вычитание целых натуральных чисел { 7 — 5 = 2 }

Вычитание целых натуральных и отрицательных чисел { 5 — (-2) = 7 }

Вычитание десятичных дробных чисел { 6,5 — 1,2 = 4,3 }

Умножение.

Пример:

Произведение целых натуральных чисел { 3 * 7 = 21 }

Произведение целых натуральных и отрицательных чисел { 5 * (-3) = -15 }

Произведение десятичных дробных чисел { 0,5 * 0,6 = 0,3 }

Деление.

Пример:

Деление целых натуральных чисел { 27 / 3 = 9 }

Деление целых натуральных и отрицательных чисел { 15 / (-3) = -5 }

Деление десятичных дробных чисел { 6,2 / 2 = 3,1 }

Извлечение корня из числа.

Пример:

Извлечение корня из целого числа { корень(9) = 3 }

Извлечение корня из десятичных дробей { корень(2,5) = 1,58 }

Извлечение корня из суммы чисел { корень(56 + 25) = 9 }

Извлечение корня из разницы чисел { корень (32 – 7) = 5 }

Возведение числа в квадрат.

Пример:

Возведение в квадрат целого числа { (3) 2 = 9 }

Возведение в квадрат десятичных дробей { (2,2) 2 = 4,84 }

Перевод в десятичные дроби.

Пример:

{ 1/3 = 0,33 }

{ ½ = 0,5 }

Вычисление процентов от числа

Пример:

Увеличить на 15% число 230 { 230 + 230 * 0,15 = 264,5 }

Уменьшить на 35% число 510 { 510 – 510 * 0,35 =331,5 }

18% от числа 140 это { 140 * 0,18 = 25,2 }

  • Альфашкола
  • Статьи
  • Сложение и вычитание отрицательных чисел

Сложение и вычитание отрицательных чисел

Существуют разные типы чисел — четные числа, нечетные числа, простые числа, составные числа. Также на основе знака числа могут быть двух видов —

положительные числа

и

отрицательные числа

. Эти числа могут быть представлены на числовой линией. Среднее число в этой строке равно нулю. С левой стороны от нуля находятся отрицательные числа, а с правой стороны — положительные.

Отрицательные и положительные числа

Ноль — это нейтральный элемент относительно сложения целых чисел. В основном в этой статье мы будем изучать операции сложения и вычитания с отрицательными числами. Существуют определенные правила для знаков при сложении и вычитании:

Правила для знаков при сложении и вычитании

  • Для того чтобы сложить два отрицательных числа, надо сложить два числа и поставить знак минус.

((-2)+(-3)=-5)

  • Если первое число положительное, а второе отрицательное, смотрим, какое число по модулю больше, отнимаем от большего меньшее число и ставим знак большего числа:

((-8)+4=4-8=-4)

(9+(-4)=9-4=5)

Для каждого числа кроме (0) существует противоположный элемент, при сумме с ним образуется ноль:

(-9+9=0)     (7,1+(-7,1)=0)

  • При вычитания двух чисел, в которых оба отрицательные, следует знать правило: минус на минус дает плюс. То есть, если стоят рядом два минуса, в сумме получается плюс.

((-7)-(-6)=(-7)+6=(-1))

  • Если первое число положительное, а второе отрицательное, вычитаем по тому же принципу, что и складываем: смотрим, какое число по модулю больше, отнимаем от большего меньшее число и ставим знак большего числа.

(7-9=-2) так как (9>7)

  • Также не стоит забывать минус на минус дает плюс:

(7-(-9)=7+9=16)

  1.  (4+(-5))
  2.  (-36+15)
  3. ((-17)+(-45))
  4. (-9+(-1))

Решение:

  1.  (4+(-5)=4-5=-1)
  2.  (-36+15=-21)
  3. ((-17)+(-45)) (=-17-45=-62)
  4. (-9+(-1)=-9-1=-10)
  1. (3-(-6))
  2.  (-16-35)
  3. (-27-(-5))
  4.  (-94-(-61))

Решение:

  1.  (3-(-6)=3+6=9)
  2. (-16-35=-51)
  3.  (-27-(-5)=-27+5=-22)
  4.  (-94-(-61)=-94+61=-33)

Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы «Альфа». Запишитесь на пробное занятие уже сейчас!


Запишитесь на бесплатное тестирование знаний!

Репетитор по математике

Южно-Российский государственный политехнический университет им. М.И. Платова

Репетитор по математике

Гомельский государственный университет им. Ф. Скорины

Как решать примеры с минусами

Еще в начальной школе учат, как складывать и вычитать числа. Для того чтобы научиться это делать, необходимо выучить таблицу сложения и основанную на ней таблицу вычитания. Получается, первоклашка сможет из семнадцати вычесть девять или решить любой подобный пример. Однако завести в тупик его сможет пример обратного характера: как вычесть из девяти семнадцать. Примеры с отрицательными числами даются по школьной программе много позже, когда человек созревает до абстрактного мышления.

Как решать примеры с минусами

Инструкция

Математических действий существует четыре вида: сложение, вычитание, умножение и деление. Поэтому примеров с минусами будет четыре типа. Отрицательные числа внутри примера выделяются скобками для того, чтобы не перепутать математическое действие. Например, 6-(-7), 5+(-9), -4*(-3) или 34:(-17).

Сложение. Данное действие может иметь вид:1) 3+(-6)=3-6=-3. Замена действия: сначала раскрываются скобки, знак «+» меняется на противоположный, далее из большего (по модулю) числа «6» отнимается меньшее — «3», после чего ответу присваивается знак большего, то есть «-«.
2) -3+6=3. Этот пример можно записать по-другому («6-3») или решать по принципу «из большего отнимать меньшее и присваивать ответу знак большего».
3) -3+(-6)=-3-6=-9. При раскрытии скобок происходит замена действия сложения на вычитание, затем суммируются модули чисел и результату ставиться знак «минус».

Вычитание.1) 8-(-5)=8+5=13. Раскрываются скобки, знак действия меняется на противоположный, получается пример на сложение.
2) -9-3=-12. Элементы примера складываются и ответ получает общий знак «-«.
3) -10-(-5)=-10+5=-5. При раскрытии скобок снова меняется знак на «+», далее из большего числа отнимается меньшее и у ответа — знак большего числа.

Умножение и деление.При выполнении умножения или деления знак не влияет на само действие. При произведении или делении чисел с разными знаками ответу присваивается знак «минус», если числа с одинаковыми знаками — у результата всегда знак «плюс».1)-4*9=-36; -6:2=-3.
2)6*(-5)=-30; 45:(-5)=-9.
3)-7*(-8)=56; -44:(-11)=4.

Источники:

  • таблица с минусами

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

В этом уроке мы не будем разбирать, как решаются
линейные
или
квадратные
неравенства.
Нас будет интересовать только вопрос:
«Как записать ответ неравенства специальными математическими знаками,
например, в виде

x ∈ (3; +∞) ?».

Стоит отметить, что далеко не во всех учебных заведениях требуют обязательно записывать ответ неравенства
в виде
x ∈ (3; +∞) .
В некоторых школах в 8 и 9 классе разрешают оставлять ответ, используя знаки
больше
«>» и «<». Например, следующим образом.

Ответ: x > 3

Впрочем, мы рекомендуем освоить запись ответа неравенства в математических обозначениях сразу, так как в любом случае
в старшей школе и затем в университете будут требовать именно такую запись ответа.

Перед разбором, как записывать ответ неравенства математическими знаками,
вспомним расшифровку и обозначение этих знаков.

Знак Расшифровка
«Принадлежит»

Легко запомнить знак, как зеркальное отображение русской буквы
«Э» или
как символ евро «», но только с одной палочкой посередине.

(  ) «Круглые скобки»
Используются, когда число на границе интервала
НЕ входит в сам интервал.
На числовой оси такие числа обозначают «пустой» точкой.
[  ] «Квадратные скобки»
Используются,
когда число на границе интервала входит в сам интервал.
На числовой оси такие числа обозначают «заполненной» точкой.
«Объединение»
Знак похож на подковку. Используется для объединения двух и более интервалов.
+ ∞ «Плюс бесконечность»
Изображается как цифра «8»
на боку со знаком «+» слева.
Обозначает бесконечность на положительном (правом) краю числовой оси.
− ∞

«Минус бесконечность»
Изображается как
цифра «8» на боку
со знаком «» слева.
Обозначает бесконечность на отрицательном (левом) краю числовой оси.

Перейдем к непосредственной записи ответа неравенства. Рассмотрим и решим линейное неравенство.

x − 6 > 8
x > 6 + 8
x > 14

Мы решили линейное неравенство, теперь запишем его ответ с помощью математических знаков.

Важно!
Галка

Перед тем, как записывать ответ неравенства, обязательно изобразите его на числовой оси.

ответ неравенства на оси

Итак, мы изобразили ответ неравенства на числовой оси. После этого запишем слово
«Ответ:» и за ним запишем «x ∈».
Такая запись читается как «икс принадлежит».

Ответ: x ∈

Взглянув на рисунок ответа на числовой оси, мы видим, что область

решений начинается с числа «14».
Число «14» не входит в область решений («пустая» точка на оси). Значит, используем круглую скобку.

Ответ: x ∈ (14; …

Нам остается понять, где заканчивается область решений справа. Правильный ответ —
справа область заканчивается в положительной бесконечности «+ ∞».

плюс и минус бесконечность на числовой оси

На числовой оси на обоях краях слева и справа соответственно расположены «минус» и «плюс» бесконечности.
Как правило, их не рисуют на числовой оси лишний раз, т.к. их наличие на оси подразумевается.

Запишем окончательный ответ.

Ответ: x ∈ (14; + ∞)

Запомните!
!

Знаки «+ ∞»
и «− ∞» всегда записываются с
круглыми скобками.

Разберем другой пример.

−7x ≥ 56
            −7x ≥ 56 |     :(−7)
x ≤ 8

Также как и в предыдущем примере всегда
начинаем записывать
ответ с записи «x ∈…».

Ответ: x ∈

икс меньше или равен восьми

В ответе «x ≤ 8» область решений
начинается с «− ∞» и заканчивается на
«8», которое входит в ответ. Значит, «8» будет с
квадратной скобкой.
Так и запишем в ответе.

Ответ: x ∈ (− ∞; 8]

Запись ответа неравенства для квадратных неравенств

При решении квадратных неравенств часто может получаться несколько интервалов в ответе. Разберемся, как их записывать в ответ.
Рассмотрим пример квадратного неравенства и его решение.

x2 − 3x + 2 < 0

x1;2 =

3 ±
32 − 4 · 1 · 2
2 · 1

x1;2 =

x1;2 =

икс больше 1 и меньше 2

1 < x < 2

В ответе мы получили один интервал. Запишем его в ответ. Как обычно, начнем запись ответа с «x ∈».
Далее используем круглые скобки, т.к. оба числа не входят в границы интервалов.

Ответ: x ∈ (1 ; 2)


Рассмотрим другой пример квадратного неравенства и его решения.

x2 − 2x − 3 ≥ 0

x1;2 =

2 ±
22 − 4 · 1 · (−3)
2 · 1

x1;2 =

x1;2 =

икс меньше минус 1 и больше 3

x ≤ −1;    x ≥ 3

В ответе неравенства мы получили два интервала в области решений
(x ≤ −1;    x ≥ 3) и оба интервала нужно записать в ответ.
Запись ответа неравенства всегда делается слева направо (как мы привыкли читать).

Начнем слева направо записывать интервалы в ответ. Первый интервал начинается с «минус» бесконечности и заканчивается на
«−1» (включительно).
Так и запишем.

Ответ: x ∈ (− ∞; −1] …

Второй интервал начинается с «2»(включительно) и заканчивается на «плюс» бесконечности.
Для объединения интервалов используем знак «» («объединение»).

Ответ: x ∈ (− ∞; −1] ∪ [3 ; + ∞)

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как правильно пишется ответ на заявление
  • Как правильно пишется отвертка
  • Как правильно пишется отверстие
  • Как правильно пишется от любови николаевны
  • Как правильно пишется осуществляется

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии